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Using Integral Equations
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An inverse design method that treats multiple wings (or multicomponents of a wing) is proposed and
examined. The method takes into consideration the mutual interaction among wings. It designs the section
shapes of wings that realize a speci� ed surface pressure distribution. It can be applied to two- and three-
dimensional aerodynamic design problems in various degrees of a � ow� eld, potential � ow, inviscid and
viscous � ow, subsonic and transonic � ow. The primary idea is the extension of an integral equation
method. An inverse problem is reformulated in terms of integral equations that express the relation of
pressure differences to geometrical changes of wing sections for a multiple wing system. Most of the
integral calculation is done analytically and the equations are solved numerically by introducing piecewise
function approximation. This method works well on several preliminary design problems in transonic
and high subsonic � ows. From the practical point of view, it is promising for complicated aerodynamic
design.

Nomenclature
Cp(x, y) = surface pressure distribution
ck = z location of the mean plane of wing-k
f (x, y) = shape function of wing section contours
I(k), J(k) 1 1 = number of panels in x and y directions of

wing-k
K = 2(g 1 1)M `

M` = freestream Mach number
x, y, z = Cartesian coordinates of a � ow� eld
b = parameter for Prandtl – Glauert

transformation of a coordinate system,
2 1/2(1 2 M )`

g = ratio of speci� c heats
DCp(x, y) = difference between target Cp and original

one
D f (x, y) = correction of f (x, y)
Df(x, y, z) = change of f(x, y, z)
j, h, z = coordinate system for Green’s function

integration
f(x, y, z) = perturbation velocity potential
x(x, y, z) = variation of nonlinear term of the transonic

small disturbance equation by change of
f(x, y, z), {[fx 1 (Df)x]

2 2 }1 2– f2 x

Subscripts
k = quantity concerning wing-k
1 = quantity on an upper wing surface
2 = quantity on a lower wing surface
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I. Introduction

A UTOMATIC aerodynamic design of aircraft components
has become attractive as one of the many applications of

computational � uid dynamics (CFD). For the aerodynamic
shape design, an inverse method is considered to take an im-
portant integral part, because a designer can control aerody-
namic characteristics over aircraft components directly and
precisely by prescribing the pressure distribution at their sur-
faces. Numerous methods to solve an inverse problem have
been devised.1,2 Some of the inverse design methods, such as
the constrained direct iterative surface curvature method
(CDISC),3 have steadily made progress and been applied to
practical problems. An integro-differential equation method for
transonic wing design formulated and developed by one of the
authors4 is regarded to be one of the fastest and most versatile
inverse design algorithms.2 It has been widely applied to aero-
dynamic design problems.5– 10 Most formulations of an in-
verse problem have been aimed to design a single compo-
nent in a � ow� eld. On the other hand, remarkable progress in
� ow analysis methods and computers enabled us to simulate
complicated � ow� elds of multiple wings and aircraft’s com-
ponents. A design method that can treat multiple wings (or
components) has become practically useful for aerodynamic
design. Ormsbee and Chen,11 Narramore and Beaty,12 and Shi-
gemi13 pioneered the inverse design of multielement airfoils in
incompressible potential � ow. No subsequent developments of
the inverse design of multiple components have been pub-
lished as far as the authors know; whereas several design meth-
ods using a numerical optimization algorithm have been ap-
plied to the design of multielement airfoils.14 In this paper, an
inverse design problem for multiple wings in a transonic � ow-
� eld is formulated. The formulation is the extension of Tak-
anashi’s method.4 The new formulation takes into considera-
tion wings’ mutual interactions to design wing section shapes.
The results of design problems demonstrate the feasibility of
the new formulation.

II. Formulation
To determine section shapes of plural wings in a � ow� eld

simultaneously, an integral equation system is derived from the
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Fig. 1 Coordinate system for formulation.

following three equations of � uid dynamics. The concept of
the formulation is to build the mathematical model that relates
geometrical correction to pressure differences. A � ow� eld
where kmax wings (wing-1, wing-2, and wing-kmax) exist is ap-
proximated by using the thin wing theory. The coordinate sys-
tem is indicated in Fig. 1, where x axis is streamwise, y axis
is spanwise, and z axis is in the thickness direction of wings.
We are going to treat transonic and subsonic � ow� elds. The
freestream Mach number is less than 1, and the freestream
velocity is normalized as (1, 0, 0). Then the � ow� eld is de-
scribed by the transonic small disturbance equation:

­ 12 2 2¯ ¯ ¯ ¯(1 2 M )f 1 f 1 f = (g 1 1)M f (1)¯¯ ¯¯ ¯¯ ¯` xx yy zz ` xS D­x̄ 2

The pressure coef� cients on each wing surface are expressed
as

¯Cp (x̄, ȳ) = 22f (x̄, ȳ, c 6 0) (k = 1, 2, . . . , k ) (2)¯k6 x k max

The � ow tangency condition on each wing can be written as

­¯ ¯f (x̄, ȳ, c 6 0) = f (x̄, ȳ) (k = 1, 2, . . . , k ) (3)z̄ k k6 max
­x̄

The notations, 10 and 20, are the upper and lower surface of
each wing, respectively.

Using the Plandtl– Glauert transformation such as

x = x̄, y = bȳ, z = bz̄

2 3¯ ¯f(x,y, z) = (K/b )f(x̄, ȳ, z̄), f (x, y) = (K/b ) f (x̄, ȳ),6 6

Equations (1 – 3) yield to Eqs. (4 – 6), respectively:

­ 1 2f 1 f 1 f = f (4)xx yy zz xS D­x 2

2y b
Cp x, = 22 f (x, y, c 6 0) (k = 1, 2, . . . , k )k6 x k maxS Db K

(5)

­
f (x, y, c 6 0) = f (x, y) (k = 1, 2, . . . , k ) (6)z k k6 max

­x

Let us think of two � ow� elds: the perturbation velocity po-
tential of an arbitrary � ow� eld is denoted by f I(x, y, z) and
that of the other � ow� eld is denoted by f T(x, y, z) = Df 1
f I(x, y, z). According to Eq. (4), Df is expressed as

­ 1 1I 2 I 2(Df) 1 (Df) 1 (Df) = [(f ) 1 (Df) ] 2 (f )xx yy zz x x xH J­x 2 2
(7)

The pressure distribution on each wing surface corresponding
to f I is . That corresponding to f T is . The difference,I TCp Cpk k

DCpk = 2 (k = 1, . . . , kmax), is related to the changeT ICp Cpk k

in the x velocity on each wing surface as

2DCp (x, y/b) = 22(b /K )[Df(x, y, c 6 0)]k6 k x

(k = 1, 2, . . . , k ) (8)max

The geometric correction of each wing D fk(x, y), k = 1, 2,
. . . , kmax, is related to the change in the z velocity on each
wing surface as

­
[Df(x, y, c 6 0)] = [D f (x, y)] (k = 1, 2, . . . , k ) (9)k z k6 max

­x

Applying Green’s theorem to Eq. (7), performing integration
by parts, and using the divergence theorem on the volume
integral,15 we obtain

kmax1
Df(x, y, z) = 2 {C(x, y, z, j, h, c )kO E E4p k=1 S w1 vk

3 [Df (j, h, c 1 0) 2 Df (j, h, c 2 0)]z k z k

2 C (x, y, z, j, h, c )[Df(j, h, c 1 0)z k k

2 Df(j, h, c 2 0)]} dj dhk

1
1 C (x, y, z, j, h, z )jE E E4p V

1 1I 2 I 23 [(f ) 1 Df ] 2 (f ) dj dh dz (10)j j jH J2 2

where

1
C(x, y, z, j, h, z ) =

2 2 2(x 2 j ) 1 (y 2 h) 1 (z 2 z )Ï

The domain of integration is shown in Fig. 1. The control
volume is indicated by C in Fig. 1, which is an in� nitesimal
radius sphere whose center is P(x, y, z). To maintain the math-
ematical correctness of the formulation, the domain is carefully
de� ned where Df should be C 1 continuous. The domain is
bounded by the following four areas: 1) lower and upper sur-
faces of Skw 1 v, which indicates the mean plane of wing-k
and its wake; 2) both sides of shock waves, which are assumed
to be nearly perpendicular to the wing surface; 3) the in� nite
far-� eld boundary; and 4) the in� nite out� ow boundary. At the
in� nite far-� eld and out� ow boundaries, the small disturbance
associating wings’ geometry should be tri� ing so that we can
assume Df and the velocity change (the derivative of Df) to
be zero. The contribution of the surface integrals over the in-
� nite boundaries vanishes. Furthermore, the contribution of the
integrals along the shock surface vanishes because of the
shock-polar conditions.14 The triple integral in Eq. (10) should
be evaluated by using the � nite part integration as mentioned
in Ref. 4 to exclude P(x, y, z), where C becomes singular,
from the domain of integral.

To combine Eq. (10) with the other equations, Eqs. (8) and
(9), further calculus is needed because Eqs. (8) and (9) are the
functions of x and z derivatives of Df. In detail, for wing-k,
we differentiate both sides of Eq. (10) with respect to x and
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add the resulting equation of Dfx(x, y, z) at z = ck 1 0 to that
at z = ck 2 0. A simultaneous kmax integral equation system:

1
Dus (x, y) = 2 C (x, y, c , j, h, c )k x k kE E2p S wk

3 Dws (j, h) dj dh 1 xs (x, y)k k

1
2 [C (x, y, c , j, h, c )x k pO E E2p p k S w¹ k

3 Dws (j, h) 2 C (x, y, c , j, h, c )p z k p

1
3 Dua (j, h)] dj dh 1 C (x, y, 0, j, h, z )p j xE EE4p V

3 [x(j, h, c 1 z ) 1 x(j, h, c 2 z )] dj dh dz (11)k k

where

xs (x, y) = x(x, y, c 1 0) 1 x(x, y, c 2 0)k k k

is obtained. Next, we differentiate both sides of Eq. (10) with
respect to z, and add the equation of Dfz(x, y, z) at z = ck 1
0 to that at z = ck 2 0. Performing an integration by parts on
the sum leads to kmax integral equations as

1 Dua (j, h)k
Dwa (x, y) =k E E S 22p ( y 2 h)S wk

x 2 j
3 1 1 dh djH JD2 2 1/2[(x 2 j ) 1 (y 2 h) ]

1 Dua (j, h)p
1 O E E S 2 22p (y 2 h) 1 c̄ k,pp k S w¹ p

x 2 j
3 1 1 dj dhH JD2 2 2 1/2[(x 2 j ) 1 (y 2 h) 1 c̄ ]k,p

1
2 C (x, y, c , j, h, c )z k pO E E2p p k S w¹ p

1
3 Dws (j, h) dj dh dz 2 Dua (j, h)p pO E E2p p k S w¹ p

2c̄ k,p 33 ? (2 1 3q 2 q ) dj dh2 2 2[(y 2 h) 1 c̄ ]k,p

1
1 C (x, y, 0, j, h, z )? [x(j, h, c 1 z )jz kE E E4p V

2 x(j, h, c 2 z )] dj dh dz (12)k

where

x 2 j
q = , c̄ = c 2 ck,p k p2 2 2(x 2 j ) 1 (y 2 h) 1 c̄Ï k,p

The following functions are implied in Eqs. (11) and (12):

Dws (x, y) = Df (x, y, c 1 0) 2 Df (x, y, c 2 0)k z k z k

­
= [D f (x, y) 2 D f (x, y)] (13)k1 k2

­x

Dwa (x, y) = Df (x, y, c 1 0) 1 Df (x, y, c 2 0)k z k z k

­
= [D f (x, y) 1 D f (x, y)] (14)k1 k2

­x

Dus (x, y) = Df (x, y, c 1 0) 1 Df (x, y, c 2 0)k x k x k

K
= 2 (DCp 1 DCp ) (15)k1 k222b

Dua (x, y) = Df (x, y, c 1 0) 2 Df (x, y, c 2 0)k x k x k

K
= 2 (DCp 2 DCp ) (16)k1 k222b

Through the previous process, surface integrals over the upper
and lower side of the wake of each wing are canceled. Thus
the surface integral over wings’ surface Sw remains.

For an inverse problem, the unknowns of Eq. (11) are Dwsk

(k = 1, 2, . . . , kmax), which represent the symmetric part of
geometric correction and, in other words, correction in thick-
ness. The unknowns of Eq. (12), Dwak (k = 1, 2, . . . , kmax),
are representing the antisymmetric part of geometrical correc-
tion, which is curvature change of the camber of each wing
section. Considering multiple wings in a � ow� eld, the result-
ing equations have more terms and complexity than equations
for a single wing system. The second, third, and fourth terms
of Eq. (12) as well as the second term of Eq. (11) appear to
take in the mutual interaction among wings and allow any
arbitrary z location of each wing. For single-wing cases, the z
location of a wing is always zero.

In addition, to evaluate the triple integrals of Eqs. (11) and (12)
an assumption is introduced concerning x(x, y, z). We know xk(x,
y, z) only over each wing surface boundary, nevertheless, triple
integrals require the knowledge of x(x, y, z) all over the domain.
The assumption is that the x(x, y, z) is a linear combination of
xk (k = 1, 2, . . . , kmax), which is expressed as

x (x, y, z) = x (x, y, 10)exp[22R (x, y)(z 2 c )] for z $ ck k k1 k k

(17)

x (x, y, z) = x (x, y, 20)exp[12R (x, y)(z 2 c )] for z < ck k k2 k k

(18)

where

2­
R (x, y) = abs f (x, y)/f (x, y, c 6 0) (19)k6 k6 x kF G2­x

Equations (17 – 19) come from the assumption employed in
Ref. 4 to approximate the fx pro� le along z. xk(x, y, z) rep-
resents the nonlinear term of the transonic small disturbance
equation associating with wing-k. xk(x, y, 60) is its value on
the wing surface:

1 I 2 I 2x (x, y, 60) = [(f 1 Df ) 2 (f ) ]k x x x
2

2K T 2 I 2= 2 [(Cp ) 2 (Cp ) ] (20)k6 k648b

xk(x, y, 60) has an effective value only if it is on the upper
or lower surface of wing-k, otherwise xk = 0. Therefore, the
triple integral term of Eq. (11) yields to

`kmax1
x (j, h, 10) C (x, y, 0, j, h, z 2 c̄ )p j,x k,pO HE E E2p p=1 S w 0p

3 exp[22R (j, h)z ] dz dh dj 1 x (j, h, 20)1 pE E
S wp

`

3 C (x, y, 0, j, h, z 1 c̄ )j,x k,pE
0

3 exp[22R (j, h)z ] dz dh dj (21)2 J
To assure the uniqueness of the solution to integral Eq. (11),

a constraint has to be imposed on the unknown function Dwsk.
The closure condition at the trailing edge that was previously
used in Ref. 4 is adopted:

TrailingEdge

Dws (x, y) dx = 0 (k = 1, 2, . . . , k ) (22)k maxE
LeadingEdge
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Fig. 3 Design procedure.Fig. 2 Panels on integral surface.

III. Piecewise Functions and Discretization
To enhance the applicability of the method, several aero-

dynamic properties are assumed to be piecewise linear/con-
stant. Equations (15) and (16) are transformed into discretized
equations that can be solved numerically. Each wing surface
is divided into panels as shown in Fig. 2. The wing-k has
2J(k) 1 1 panels in the spanwise ( y) direction and I(k) panels
in the chordwise (x) direction. The coordinate ( , y j) denotesjx i

the center of the panel (i, j ). The panel (i, j ) spreads from
to along x direction and from y j21/2 to y j1 1/2 alongj jx xi21/2 i1 1/2

y direction. Inside each panel, Dusk, Duak, xsk, xk(x, y, 60),
Rk6 , and Dwak are assumed to be constant. Dwsk is assumed to
vary linearly along x, but to be constant along y. Therefore,
Eq. (15) for Dwsk yields to

I(k)11 J(k)

j s mkDus (x , y ) = m Dws (x , y )k i j i, j,l,m k l21/2 mO O
l=1 m=0

I(k) J(k)

s s jk k˜1 (n 1 n ) 1 xs (x , y )i, j,l,m i, j,l,m k i jOO
l=1 m=0

I(p)1 1 J(p)

s mp1 m Dws (x , y )i, j,l,m p l21/2 mO O O
p k l=1 m=0¹

I(p) J(p)

s mp1 k Dua (x , y )i, j,l,m p l mOOO
p k l=1 m=0¹

I(p) J(p)

s sp p˜1 (n 1 n ) (23)i, j,l,m i, j,l,mOOO
p k l=1 m=0¹

considering the symmetry of the wings’ planform and � ow� eld
with respect to y = 0.

The constraint for each wing section expressed in Eq. (22)
yields to

I(k)
1 j j j j[Dws (x , y ) 1 Dws (x , y )] ? (x 2 x ) = 0k i2 1/2 j k i11/2 j i21/2 i11/2O 2l=1

(24)

(for each j: j = 0, 1, 2, . . . , J(k) of each k: k = 1, 2, . . . ,
kmax).

Because of the piecewise function approximation stated ear-
lier, the center of each panel is used to express the piecewise

constant functions such as Dusk, etc. The number of such
points is I(k) along the chordwise direction at each span sta-
tion. On the other hand, Dwsk is de� ned at the midpoint of
every side parallel to the x axis of panels. I(k) 1 1 points are
used to express the function Dwsk at each span station. Equa-
tion (23) provides I(k) equations and Eq. (24) does one equa-
tion. Consequently, we have I(k) 1 1 linear equations for I(k)
1 1 unknowns expressed as Dwsk( , y j) at each span sta-jx i1 1/2

tion. That guarantees the existence and the uniqueness of the
solution of the discretized equation system.

Equation (16) for Dwak yields to

I(k) J(k)

j a mkDwa (x , y ) = m Dua (x , y )k i j i, j,l,m k l mOO
l=1 m=0

I(k) J(k) I(p) J(p)

a a a mk k p˜1 (n 2 n ) 1 m Dua (x , y )i, j,l,m i, j,l,m i, j,l,m p l mOO OOO
l=1 m=0 p k l=1 m=0¹

I(p)11 J(p)

a mp1 k Dws (x , y )i, j,l,m p l21/2 mO O O
p k l=1 m=0¹

I(p) J(p)

a mp2 t Dua (x , y )i, j,l,m p l mO OO
p k l=1 m=0¹

I(p) J(p)

a ap p˜1 (n 2 n ) (25)i, j,l,m i,j,l,mO OO
p k l=1 m=0¹

The coef� cients that appear in Eqs. (23) and (25), , etc.,sm i, j,l,m

are the piecewise integrals over each panel. All of the piece-
wise integrals can be treated analytically. Their integral rep-
resentations are shown in detail in Ref. 16. The evaluation of
the right-hand side of Eq. (23) determines the x derivative of
the antisymmetric part of the geometric correction of each sec-
tion contour Dwak directly. For the x derivative of the sym-
metric part Dwsk, a system of (k [I(k) 1 1][J(k) 1 1] (k = 1,
. . . , kmax) linear equations should be solved. Therefore, the
geometric correction of each wing D fk is solved by integrating
Dwsk and Dwak with respect to x.

IV. Design Procedure
The inverse problem solver based on the new formulation

is incorporated into a design loop presented in Fig. 3. The
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Fig. 5 History of redesigning (M` = 0.6, Re = 1 3 106).

Fig. 4 Initial (dashed line) and designed (solid line) contours in
real scale and magni� ed � ve times in z.

design procedure is an iterative residual correction method4

that starts with an initial guess of geometry of wings. Then it
conducts � ow simulation and inverse design in turn until the
residual becomes negligibly small. The � ow simulation con-
sisting of a grid generation and a � ow solver gets the residual
DCp. The inverse design solves an inverse problem to obtain
the geometrical correction D f to design the wings’ section con-
tours. Any kind of � ow� eld, from a potential � ow to a
Navier– Stokes � ow, can be treated with this procedure since
the � ow solver and the inverse design part are independent of
each other. Here, the inverse design is coupled with Reynolds-
averaged Navier – Stokes � ow simulation so that viscous effect
can be taken into consideration for the design. We generate
grid points all over the space about wings at each iteration of
the design process. The numerical algorithms to obtain the
steady state of a � ow� eld are the LU decomposed alternating
direction implicit (LU – ADI) method for time integration with
the local time stepping and the total variation diminishing type
upwind � nite differencing in space using the MUSCL inter-
polation and Roe’s Riemann solver. The turbulent viscosity is
evaluated by the Baldwin – Lomax model.

After every inverse design step, we smooth the wing ge-
ometry f to moderate geometrical oscillations as follows.
fk6(x) at each span station of each wing is modi� ed to be on
the curve expressed as

7

nf (x*) = c x * 1 c (x*) (26)Ï6 06 n6O
n=1

where

x * = x 2 xLeadingEdge

We employ the least-square approximation curve-� tting algo-
rithm. The algorithm calculates the coef� cients C06 and Cn6 .

V. Results of Design Problems
Several examples of two airfoil systems are preliminary de-

signed by the present method. The primary object of this paper
is to show the feasibility of the new formulation. The authors
think that the design of airfoil systems adequately perform to
inspect the feasibility since airfoil design is the simple example
of design of wings. For the case of two airfoils, two long span
wings are put in a � ow� eld when the inverse problem is
solved, because it is formulated in three-dimensional space.
We specify the three-dimensional pressure distribution over the
wings as the target pressure. In this way, Hirose et al.17 de-
signed a single airfoil successfully by using Takanashi’s
method. If there is anything wrong with the formulation of the
inverse problem and implementation of the solver, the inverse
design does not work for airfoil design. Thus, we examine
airfoil cases here because of their simplicity to inspect the
results and ef� ciency of the Navier– Stokes � ow simulation.

The initial geometry of each example is shown in Fig. 4 as
the dashed contours. Every section has a NACA 0012 airfoil
shape with 0-deg angle of attack. Example 1 is regarded as a
tandem system. Both airfoils’ chord lengths are 1.0, and the x
distance (D x) and z distance (D z) from the trailing edge of the
front airfoil to the leading edge of the rear airfoil are 1.0 and
0.05, respectively. Example 2 can be considered as a simpli� ed
system of a multicomponent system, a main part and a � ap.
The chord length of the main part is 1.0, whereas that of the
� ap is 0.35, and D x and Dz are 0.1 and 0.01, respectively. The
CPU time required is 16.5 s on a 1.7-GFlop vector computer
to solve a two-wing inverse problem, when the total number
of panels I(1)? [J(1) 1 1] 1 I(2)? [J(2) 1 1] is 300. The re-
quired memory is less than 10 Mbytes. I(k), the number of
panels in the chordwise direction, is 50, for the design ex-
plained in the following sections.

A. Redesign of Known Shape

First of all, we examine the method by designing the known
shape, which is the tandem of two RAE2822 airfoils. The spec-
i� ed target pressure distribution is obtained by the Navier–

Stokes simulation of � ow about two RAE2822 airfoils whose
positions are the same as those of Example 1 (Fig. 4) except
D z (=0.087), and both airfoils have an angle of attack of 2.5
deg. Figure 5 shows the initial and converged states. At the
initial stage both airfoils are NACA 0012 shape with the angle
of attack of 0 deg. The freestream Mach number M` is 0.60
and the Reynolds number is 1 3 106. It needs � ve iterations
of the design loop to converge. At the converged stage the
agreement between the target and computed pressure distri-
butions around the leading edge is poorer than that of the rest
region. The two reasons explain the poor agreement. First, the
small disturbance approximation deteriorates in the vicinity of
the stagnation point, i.e., the leading edge of the airfoil. The
other is that the size of panels is not suf� ciently � ne there. In
fact, when we prepare doubled � ne panel distribution (100
panels) in the chordwise direction, the agreement there be-
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Fig. 7 Design process history on Example 1 (M` = 0.73, Re = 1 3 106). Target Cp, ——; current Cp, 1 and 3 .

Fig. 6 Comparison of target (dashed line) and designed (solid
line) contours.

comes much better at the converged stage. In addition, the
number of iterations to reach the convergence is reduced with
the � ner panel distribution. The designed shape is compared
with the target shape in Fig. 6. The new method works quite
well on redesigning. Little discrepancy between the two shapes
is observed.

B. Design of Arbitrary Shape

Figure 7 displays the convergence history of the design pro-
cess on Example 1 (see Fig. 4). M` is 0.73 and the Reynolds
number is 1 3 106. We specify the pressure distribution of
solid lines in the � gure as the target, which is obtained by
Navier– Stokes � ow simulation around two arbitrarily inclined
NACA 0012 airfoils with M` of 0.76. The target pressure of
the front wing has a strong shock that makes it dif� cult to
solve the inverse problem. In the vicinity of a sharp shock
wave, the nonlinear term of the small disturbance equation
takes a relatively major part, and deteriorates the accuracy of
the formulation of the inverse problem, because the formula-

tion is essentially in the � rst order. This is one examination to
assure the robustness of the inverse problem solver, whereas
the pressure distribution is not very desirable for a realistic
design target. In fact, a pressure distribution with strong shock
waves should not be speci� ed as a target pressure distribution,
because strong shock waves cause large drag force. Fortu-
nately, the � ow is not largely separated.

In Fig. 7, the leftmost plot shows the initial pressure distri-
bution and geometry contour of each airfoil. From left to right
are presented pressure distributions and corresponding geom-
etry contours after one, three, and � ve iteration(s) of the design
loop. The current pressure distribution is plotted with symbols.
The symbol 1 indicates the upper surface pressure and 3
designates the lower surface pressure. At the initial stage, both
airfoils have negative lift in spite of their symmetrical shapes
with 0-deg angle of attack. This implies the slight interaction
between two airfoils. We obtain the wing geometry that almost
realizes the target pressure distribution after � ve iterations of
the design loop. In the vicinity of the shock wave, the complete
agreement with the target pressure is not always attainable. The
further iteration of the loop or the � ner panel discretization
does not improve the designed result in the vicinity of the
shock wave. Sophisticated strategy should be taken for the
improvement. Reference 10 mentioned some of the strategy
such as modi� cation of the equation and smoothing of the
wing surfaces.

Figure 8 presents the convergence history of Example 2 (see
Fig. 4). M` is 0.60 and the Reynolds number is 1 3 106. The
speci� ed target pressures drawn with solid lines are those used
for redesigning a known shape. In Fig. 8, the leftmost plot
shows the initial pressure distribution and geometry contour of
each airfoil. From left to right are presented pressure distri-
butions and corresponding geometry contours after one, � ve,
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Fig. 8 Design process history on Example 2 (M` = 0.60, Re = 1 3 106). Target Cp, ——; current Cp, 1 and 3 .

and nine iteration(s) of the design loop. At initial stage, the
lift of the main part is slightly positive, and that of the � ap is
de� nitely negative. This fact suggests that there is strong aero-
dynamic interaction between two airfoils. We obtain the de-
signed geometry after nine iterations. As stated before, the
doubled � ne panel discretization improves the agreement be-
tween the target and the calculated pressures of the conver-
gence state as well as reduces the number of iterations required
for convergence by 20%.

The comparison is made in Fig. 4 between the initial and
designed geometry of Example 1 and Example 2. Figure 4
shows the airfoil contours in the real scale and in the magni� ed
scale in the z direction. Both airfoils of Example 1 have as-
sumed the same angle of attack, as expected. On the other
hand, both airfoils of Example 2 have changed greatly their
shapes and angles of attack. The � ap-like airfoil has de� nitely
thickened and inclined. It is interesting to compare the de-
signed shape of Example 2 with that of the redesigning prob-
lem, both of which we specify the same target pressure distri-
bution. It can be seen that difference in the interaction between
airfoils precisely affects designed shapes. Designed shapes of
both problems differ greatly in three points: 1) the shape of
the trailing edge of a front airfoil, 2) the angle of attack of a
rear airfoil, and 3) the thickness of a rear airfoil.

VI. Concluding Remarks
An inverse design method for multiple wing systems has

been devised on the basis of Takanashi’s method. The new
method determines wing section geometry that realizes the
speci� ed target pressure distribution over wings. It designs
multiple wings in a transonic/high-subsonic � ow� eld simul-
taneously. The inverse problem is formulated to be integral
equations that relates geometrical correction to pressure dif-

ference. The formulation starts from the transonic small dis-
turbance equation and considers interacting effects among
wings. The inverse problem is solved numerically with discre-
tizing wings’ surface into small panels. An iterative design
procedure is constructed coupling the new inverse problem
solver and a Navier– Stokes � ow analysis code. The procedure
has been applied to preliminary design problems to show the
feasibility of the new inverse design method. The authors con-
� rm that the method works well for the design of airfoil shapes
of multiple airfoil systems.

Through the research we have also found the following
facts:

1) The inverse problem can be formulated analytically for a
� ow� eld of multiple wings interacting with each other.

2) The inverse design method is able to evaluate interacting
effect among wings accurately and provide design results rel-
evant to the effect.

3) The method is so ef� cient in computational time and
memory that it is a promising concept for more complicated
design problems.
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