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Inverse Design Method for Transonic Multiple Wing Systems
Using Integral Equations
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and
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An inverse design method that treats multiple wings (or multicomponents of a wing) is proposed and
examined. The method takes into consideration the mutual interaction among wings. It designs the section
shapes of wings that realize a specified surface pressure distribution. It can be applied to two- and three-
dimensional aerodynamic design problems in various degrees of a flowfield, potential flow, inviscid and
viscous flow, subsonic and transonic flow. The primary idea is the extension of an integral equation
method. An inverse problem is reformulated in terms of integral equations that express the relation of
pressure differences to geometrical changes of wing sections for a multiple wing system. Most of the
integral calculation is done analytically and the equations are solved numerically by introducing piecewise
function approximation. This method works well on several preliminary design problems in transonic
and high subsonic flows. From the practical point of view, it is promising for complicated aerodynamic

design.
Nomenclature

Cp(x, y) = surface pressure distribution

Cr = z location of the mean plane of wing-k

fx, y) = shape function of wing section contours

I(k), J(k) + 1 = number of panels in x and y directions of
wing-k

K = (y+ M2

M. = freestream Mach number

X, ¥,z = Cartesian coordinates of a flowfield

B = parameter for Prandtl- Glauert
transformation of a coordinate system,
a - M)~

v = ratio of specific heats

ACp(x, y) = difference between target Cp and original
one

Af(x, y) = correction of f(x, y)

Ad(x,y,z) = change of db(x, y, 2)

&, = coordinate system for Green’s function
integration

dx, y, 2) = perturbation velocity potential

X, y, 2) = variation of nonlinear term of the transonic
small disturbance equation by change of
by, 2), b + AGLP = b3)

Subscripts

k = quantity concerning wing-k

+ = quantity on an upper wing surface

= quantity on a lower wing surface
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I. Introduction

UTOMATIC aerodynamic design of aircraft components

has become attractive as one of the many applications of
computational fluid dynamics (CFD). For the aerodynamic
shape design, an inverse method is considered to take an im-
portant integral part, because a designer can control aerody-
namic characteristics over aircraft components directly and
precisely by prescribing the pressure distribution at their sur-
faces. Numerous methods to solve an inverse problem have
been devised."” Some of the inverse design methods, such as
the constrained direct iterative surface curvature method
(CDISC),” have steadily made progress and been applied to
practical problems. An integro-differential equation method for
transonic wing design formulated and developed by one of the
authors* is regarded to be one of the fastest and most versatile
inverse design algorithms.” It has been widely applied to aero-
dynamic design problems.” ' Most formulations of an in-
verse problem have been aimed to design a single compo-
nent in a flowfield. On the other hand, remarkable progress in
flow analysis methods and computers enabled us to simulate
complicated flowfields of multiple wings and aircraft’s com-
ponents. A design method that can treat multiple wings (or
components) has become practically useful for aerodynamic
design. Ormsbee and Chen," Narramore and Beaty," and Shi-
gemi' pioneered the inverse design of multielement airfoils in
incompressible potential flow. No subsequent developments of
the inverse design of multiple components have been pub-
lished as far as the authors know; whereas several design meth-
ods using a numerical optimization algorithm have been ap-
plied to the design of multielement airfoils.'"* In this paper, an
inverse design problem for multiple wings in a transonic flow-
field is formulated. The formulation is the extension of Tak-
anashi’s method.* The new formulation takes into considera-
tion wings’ mutual interactions to design wing section shapes.
The results of design problems demonstrate the feasibility of
the new formulation.

II. Formulation

To determine section shapes of plural wings in a flowfield
simultaneously, an integral equation system is derived from the
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Fig. 1 Coordinate system for formulation.

following three equations of fluid dynamics. The concept of
the formulation is to build the mathematical model that relates
geometrical correction to pressure differences. A flowfield
where k.. wings (wing-1, wing-2, and wing-k ...) exist is ap-
proximated by using the thin wing theory. The coordinate sys-
tem is indicated in Fig. 1, where x axis is streamwise, y axis
is spanwise, and z axis is in the thickness direction of wings.
We are going to treat transonic and subsonic flowfields. The
freestream Mach number is less than 1, and the freestream
velocity is normalized as (1, 0, 0). Then the flowfield is de-
scribed by the transonic small disturbance equation:

_ _ _ 1 -
(1 = M2 + by + bo= (y + DM = (— ¢%> (1)
0x \2

The pressure coefficients on each wing surface are expressed
as

Cpie® V) = —20:F 7, e = 0) (k=1,2,.. . kp) ()

The flow tangency condition on each wing can be written as

b5, T, ¢ £ 0) = a%fh(x, D k=12 ke 3)

The notations, +0 and —0, are the upper and lower surface of
each wing, respectively.
Using the Plandtl- Glauert transformation such as

=Bz

[, y) = (KIBA)f-(%, ¥).

x=1x  y=By
by, 2) = KIBIG(, 3, 2),
Equations (1-3) yield to Eqs. (4-6), respectively:

0 (1,
d)—“ + d)yy + d)zz = a_x (5 d)x) 4)
Cpe (x, %) -2 %Mx, Vet 0) (k=1,2, ... kuw)
(5)
d)z(x’ y’ Cr * 0) = ;_xf}c:(x, y) (k = 1, 2, ey kmax) (6)

Let us think of two flowfields: the perturbation velocity po-
tential of an arbitrary flowfield is denoted by ¢’(x, y, z) and
that of the other flowfield is denoted by ¢’(x, y, z) = Ad +
&’(x, v, 7). According to Eq. (4), Ad is expressed as

1 1

(Ad)e + (Ad)y + (Ad). =~ {— (), + (Ab)T” — = (¢')%}
ox |2 2

)

The pressure distribution on each wing surface corresponding
to &’ is Cpt. That corresponding to ¢ " is Cp . The difference,
ACp.=Cpi — Cpr k=1, ..., kuw), is related to the change
in the x velocity on each wing surface as

ACpw-(x, yIB) = —2(BIK)[Ad(x, y, ci * 0)].

k=1,2, ..., ko) (8)

The geometric correction of each wing Afi(x, y), k = 1, 2,
., ko is related to the change in the z velocity on each
wing surface as

[Ad(x,y, e+ onz:;—xmﬁt(x,y)] k=12 ko) (9)

Applying Green’s theorem to Eq. (7), performing integration
by parts, and using the divergence theorem on the volume
integral,” we obtain

k,
_
Adbx, y, 2) = —— E f f (P, y, 2, &m,co
4 = Sovt v

[Ad)e (g’ m, ¢ + 0) — Ad)g (E, N, Cx — 0)]

X

- W(x,y z &m clAGE M, ¢ + 0)

— AG(E, M, ¢ — 0)]} dE dn

1
+4_fffllf§(x,y,z, &m0
m™ v

| |
X {5 (e + Adel® — > (¢')§} d§ dm dg (10)

where

1
-+ G-+ -

Yx, y,z, &m, 0= Vo

The domain of integration is shown in Fig. 1. The control
volume is indicated by C in Fig. 1, which is an infinitesimal
radius sphere whose center is P(x, y, z). To maintain the math-
ematical correctness of the formulation, the domain is carefully
defined where A should be C' continuous. The domain is
bounded by the following four areas: 1) lower and upper sur-
faces of Syw + v, which indicates the mean plane of wing-k
and its wake; 2) both sides of shock waves, which are assumed
to be nearly perpendicular to the wing surface; 3) the infinite
far-field boundary; and 4) the infinite outflow boundary. At the
infinite far-field and outflow boundaries, the small disturbance
associating wings’ geometry should be trifling so that we can
assume A¢ and the velocity change (the derivative of Ad) to
be zero. The contribution of the surface integrals over the in-
finite boundaries vanishes. Furthermore, the contribution of the
integrals along the shock surface vanishes because of the
shock-polar conditions." The triple integral in Eq. (10) should
be evaluated by using the finite part integration as mentioned
in Ref. 4 to exclude P(x, y, z), where ¥ becomes singular,
from the domain of integral.

To combine Eq. (10) with the other equations, Eqs. (8) and
(9), further calculus is needed because Egs. (8) and (9) are the
functions of x and z derivatives of Ad. In detail, for wing-k,
we differentiate both sides of Eq. (10) with respect to x and
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add the resulting equation of Ad.(x, y, z) at z = ¢, + 0 to that
at z = ¢, — 0. A simultaneous k., integral equation system:

1
Auslx, y) = —— f f V.(x, y, ¢ &M, o)
2w Sov

X Awsk(E M) d§ dn + xsdx, y)

ff [Vux,y, ciw & M, Cp)

X Aws,,(E, M — Vx, y, e &M, c)
1
X Aua,(§ M)] d§ dn +—fff‘l’gx(x, ¥0, &m,0)
4 v
X [x(&m, e+ O+ x(Em, = ] dEdn dl an
where
xsix, y) = x(x, y, e + 0) + x&x, y, ¢ — 0)
is obtained. Next, we differentiate both sides of Eq. (10) with
respect to z, and add the equation of Ad.(x, y, z) at z = ¢, +

0 to that at z = ¢, — 0. Performing an integration by parts on
the sum leads to k., integral equations as

Awak(x y) _ L ff (Auak(g Tl)
see \ (¥ — M)’
X {1 + X~ ¢ }) dm dg
[(x — g)z ¥ (y - T])Z]I/Z n
23]
prk y - Tl) + Ckﬁ

x{l X~ & })dgd
[(x — &7+ (y — m)” + ¢l n

— ff Vx,y, co, & m,cp)

X Aws,(E, n)dgdndc——Eff Aua, (& m)

prk

2
Cip

X ——=———.(2 + 3¢ — ¢°) dé d

(y — T])2 T C%p]z q q &dn

1
+ — f f f q’iz(x’ Y, 07 g’ m, C)[X(g, N, Ck + é)
4m v

= x(& m, ¢ — )] d€ dm dL (12)
where
x — & a
Voo tro-wra,
The following functions are implied in Eqs. (11) and (12):
Awsi(x, y) = Ad(x, y, ¢ + 0) — Adulx, y, cx = 0)

-2 [Afr (x, y) — Afic(x, Y] (13)
ax
Awax, y) = Adb(x, y, ¢, + 0) + Ad.(x, y, ¢, — 0)
= (A )+ AL ) (14)
Aus(x, ) = Adb(x, y, cx + 0) + Ad.(x, y, ¢ — 0)
K
= _2TF2 (ACpis + ACpi) (15)

Aualx, y) = Ad.(x, y, cx + 0) — Ad.(x, y, ¢, — 0)

K
_2[32 - Acpk—) (16)

Through the previous process, surface integrals over the upper
and lower side of the wake of each wing are canceled. Thus
the surface integral over wings’ surface Sw remains.

For an inverse problem, the unknowns of Eq. (11) are Aws,
(k =1, 2, ..., kaw), which represent the symmetric part of
geometric correction and, in other words, correction in thick-
ness. The unknowns of Eq. (12), Awa, (k = 1, 2, ..., kma)s
are representing the antisymmetric part of geometrical correc-
tion, which is curvature change of the camber of each wing
section. Considering multiple wings in a flowfield, the result-
ing equations have more terms and complexity than equations
for a single wing system. The second, third, and fourth terms
of Eq. (12) as well as the second term of Eq. (11) appear to
take in the mutual interaction among wings and allow any
arbitrary z location of each wing. For single-wing cases, the z
location of a wing is always zero.

In addition, to evaluate the triple integrals of Egs. (11) and (12)
an assumption is introduced concerning x (x, y, 7). We know x,(x,
¥, z) only over each wing surface boundary, nevertheless, triple
integrals require the knowledge of x(x, y, z) all over the domain.
The assumption is that the x(x, y, z) is a linear combination of
X« (k=1,2,..., k), which is expressed as

XX, ¥, 2) = xlx, ¥, +0)exp[— 2R, (x, y)(z — ¢J] for z=c¢
(17)

XX, ¥, 2) = xx, y, —0)exp[+2R,_(x, y)(z — cJ] for z<c
(18)

where
62
R;.(x, y) = abs [F Jie (6, YdL(x, y, e = 0)} (19)

Equations (17-19) come from the assumption employed in
Ref. 4 to approximate the ¢, profile along z. x.(x, y, z) rep-
resents the nonlinear term of the transonic small disturbance
equation associating with wing-k. x.(x, y, =0) is its value on
the wing surface:

1
xdx, y, £0) = 3 [(bL + Ab)* — (b1

2

K 1 \2
334 [(Cpie)” — (Cpie)] (20)

X«(x, ¥, =0) has an effective value only if it is on the upper
or lower surface of wing-k, otherwise . = 0. Therefore, the
triple integral term of Eq. (11) yields to

K, -
1 L
. {f f Xp(g’ m, +0) f q’ix(x’ v, 0, E, m, € - C_‘kyp)
™ =1 S 0

X f Y, (e, y,0, &m, C+ &)

X exp[—2R_(§ m){] dl dn dE} 21)

To assure the uniqueness of the solution to integral Eq. (11),
a constraint has to be imposed on the unknown function Aws,.
The closure condition at the trailing edge that was previously
used in Ref. 4 is adopted:

Trailing Edge
f Awsi(x, y) dx =0 (k=1,2,..., kmd) (22)

Leading Edge
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III. Piecewise Functions and Discretization

To enhance the applicability of the method, several aero-
dynamic properties are assumed to be piecewise linear/con-
stant. Equations (15) and (16) are transformed into discretized
equations that can be solved numerically. Each wing surface
is divided into panels as shown in Fig. 2. The wing-k has
2J(k) + 1 panels in the spanwise (y) direction and /(k) panels
in the chordwise (x) direction. The coordinate (x%, y’) denotes
the center of the panel (i, j). The panel (i, j) spreads from
X1 to X ip along x direction and from y’; "2 to yj+ 2 along
y direction. Inside each panel, Aus,, Aua,, Xsw» Xo(x, ¥, =0),
R.., and Awa, are assumed to be constant. Aws, is assumed to
vary linearly along x, but to be constant along y. Therefore,
Eq. (15) for Aws, yields to

10+ 1 JH
J _ S m
Ausx?, y) = E E W0 mAWS X 12, Vi)
=1 m=0
% I
S ~ 5 J
+ E E (Vi.‘j./.m + Vt.‘j,/.m) + Xsk(x is y,-)
=1 m=0
I(p)+1 J(p)
s m
+ E E E Mi.’}'./.mAWSp(XF 12 Yom)
pek =1 m=0
I(p) Jp)
s, m
+ E E E Kifj./.mA”ap(x/, )
ik =1 m=0
I(p) Jp)
s, ~5
+ E E (Vifj./.m + Vt.’j./.m) (23)
ik =1 m=0

considering the symmetry of the wings’ planform and flowfield
with respect to y = 0.

The constraint for each wing section expressed in Eq. (22)
yields to

(5]

1 . . . )
2 5 [Awsk(-xji— 1725 y,-) + Awsi(x7y 1725 y,-)] (X — X)) =0
=1
(24)
(for each j: j=0,1,2,..., Jk) of each k: k =1, 2, ...,
K )

Because of the piecewise function approximation stated ear-
lier, the center of each panel is used to express the piecewise

y=0 y

)

Wing 1

Wing2

Fig. 2 Panels on integral surface.

constant functions such as Aus,, etc. The number of such
points is I(k) along the chordwise direction at each span sta-
tion. On the other hand, Aws, is defined at the midpoint of
every side parallel to the x axis of panels. I(k) + 1 points are
used to express the function Aws, at each span station. Equa-
tion (23) provides I(k) equations and Eq. (24) does one equa-
tion. Consequently, we have I(k) + 1 linear equations for I(k)
+ 1 unknowns expressed as Aws(x %, 1, ¥7) at each span sta-
tion. That guarantees the existence and the uniqueness of the
solution of the discretized equation system.
Equation (16) for Awa, yields to

% I
j _ E: E: @ m
Awak(x i y;) = Mi.‘}'.l.mAuak(xl 5 ym)
=1 m=0
1 I 1p) Jp)
E:E: a ~a E:E:E: a, m
+ (vi.‘}.l.zrz - vi.‘j.l.m) + P«i.’j,/.mA”ap(x/ Vo)
=1 m=0 pik I=1 m=0
I(p)+1 Jp)
a, m
+ E E E Ki.’j.l.mAwsp(x T Vo)
p=k I=1 m=0
Ip) J(p)
a, m
- E E E Ti.lj.l.mAuap(xl s Vo)
prk =1 m=0
Ip) Jp)
a ~q
+ E E (Vi.’}'./.m - Vi.’}'./.m) (25)
p+k =1 m=0

The coefficients that appear in Eqgs. (23) and (25), 7 ,.. etc.,
are the piecewise integrals over each panel. All of the piece-
wise integrals can be treated analytically. Their integral rep-
resentations are shown in detail in Ref. 16. The evaluation of
the right-hand side of Eq. (23) determines the x derivative of
the antisymmetric part of the geometric correction of each sec-
tion contour Awa, directly. For the x derivative of the sym-
metric part Aws,, a system of =, [I(k) + 1][J(k) + 1] (k= 1,

., kume) linear equations should be solved. Therefore, the
geometric correction of each wing Af; is solved by integrating
Aws, and Awa, with respect to x.

IV. Design Procedure

The inverse problem solver based on the new formulation
is incorporated into a design loop presented in Fig. 3. The
START

e Initial Wmg

Fig. 3 Design procedure.
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design procedure is an iterative residual correction method*
that starts with an initial guess of geometry of wings. Then it
conducts flow simulation and inverse design in turn until the
residual becomes negligibly small. The flow simulation con-
sisting of a grid generation and a flow solver gets the residual
ACp. The inverse design solves an inverse problem to obtain
the geometrical correction Afto design the wings’ section con-
tours. Any kind of flowfield, from a potential flow to a
Navier- Stokes flow, can be treated with this procedure since
the flow solver and the inverse design part are independent of
each other. Here, the inverse design is coupled with Reynolds-
averaged Navier- Stokes flow simulation so that viscous effect
can be taken into consideration for the design. We generate
grid points all over the space about wings at each iteration of
the design process. The numerical algorithms to obtain the
steady state of a flowfield are the LU decomposed alternating
direction implicit (LU- ADI) method for time integration with
the local time stepping and the total variation diminishing type
upwind finite differencing in space using the MUSCL inter-
polation and Roe’s Riemann solver. The turbulent viscosity is
evaluated by the Baldwin-Lomax model.

After every inverse design step, we smooth the wing ge-
ometry f to moderate geometrical oscillations as follows.
fr-(x) at each span station of each wing is modified to be on
the curve expressed as

7

Fo@) = co. Vat + Y () (26)

n=1
where
X* = X — XicadineE
ading Edge

We employ the least-square approximation curve-fitting algo-
rithm. The algorithm calculates the coefficients Co. and C,..

V. Results of Design Problems

Several examples of two airfoil systems are preliminary de-
signed by the present method. The primary object of this paper
is to show the feasibility of the new formulation. The authors
think that the design of airfoil systems adequately perform to
inspect the feasibility since airfoil design is the simple example
of design of wings. For the case of two airfoils, two long span
wings are put in a flowfield when the inverse problem is
solved, because it is formulated in three-dimensional space.
We specify the three-dimensional pressure distribution over the
wings as the target pressure. In this way, Hirose et al."” de-
signed a single airfoil successfully by using Takanashi’s
method. If there is anything wrong with the formulation of the
inverse problem and implementation of the solver, the inverse
design does not work for airfoil design. Thus, we examine
airfoil cases here because of their simplicity to inspect the
results and efficiency of the Navier- Stokes flow simulation.

The initial geometry of each example is shown in Fig. 4 as
the dashed contours. Every section has a NACA 0012 airfoil
shape with 0-deg angle of attack. Example 1 is regarded as a
tandem system. Both airfoils’ chord lengths are 1.0, and the x
distance (Ax) and z distance (Az) from the trailing edge of the
front airfoil to the leading edge of the rear airfoil are 1.0 and
0.05, respectively. Example 2 can be considered as a simplified
system of a multicomponent system, a main part and a flap.
The chord length of the main part is 1.0, whereas that of the
flap is 0.35, and Ax and Az are 0.1 and 0.01, respectively. The
CPU time required is 16.5 s on a 1.7-GFlop vector computer
to solve a two-wing inverse problem, when the total number
of panels I(1)-[J(1) + 1] + I(2)-[J(2) + 1] is 300. The re-
quired memory is less than 10 Mbytes. I(k), the number of
panels in the chordwise direction, is 50, for the design ex-
plained in the following sections.

A. Redesign of Known Shape

First of all, we examine the method by designing the known
shape, which is the tandem of two RAE2822 airfoils. The spec-
ified target pressure distribution is obtained by the Navier-
Stokes simulation of flow about two RAE2822 airfoils whose
positions are the same as those of Example 1 (Fig. 4) except
Az (=0.087), and both airfoils have an angle of attack of 2.5
deg. Figure 5 shows the initial and converged states. At the
initial stage both airfoils are NACA 0012 shape with the angle
of attack of 0 deg. The freestream Mach number M.. is 0.60
and the Reynolds number is 1 X 10° It needs five iterations
of the design loop to converge. At the converged stage the
agreement between the target and computed pressure distri-
butions around the leading edge is poorer than that of the rest
region. The two reasons explain the poor agreement. First, the
small disturbance approximation deteriorates in the vicinity of
the stagnation point, i.e., the leading edge of the airfoil. The
other is that the size of panels is not sufficiently fine there. In
fact, when we prepare doubled fine panel distribution (100
panels) in the chordwise direction, the agreement there be-

[aN]

Example 1

Fig. 4 [Initial (dashed line) and designed (solid line) contours in
real scale and magnified five times in z.

After 5th iteration

Fig. 5 History of redesigning (M.. = 0.6, Re = 1 x 10°.
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comes much better at the converged stage. In addition, the
number of iterations to reach the convergence is reduced with
the finer panel distribution. The designed shape is compared
with the target shape in Fig. 6. The new method works quite
well on redesigning. Little discrepancy between the two shapes
is observed.

B. Design of Arbitrary Shape

Figure 7 displays the convergence history of the design pro-
cess on Example 1 (see Fig. 4). M., is 0.73 and the Reynolds
number is 1 X 10° We specify the pressure distribution of
solid lines in the figure as the target, which is obtained by
Navier- Stokes flow simulation around two arbitrarily inclined
NACA 0012 airfoils with M.. of 0.76. The target pressure of
the front wing has a strong shock that makes it difficult to
solve the inverse problem. In the vicinity of a sharp shock
wave, the nonlinear term of the small disturbance equation
takes a relatively major part, and deteriorates the accuracy of
the formulation of the inverse problem, because the formula-

.05

.05

Fig. 6 Comparison of target (dashed line) and designed (solid
line) contours.

After
1st iteration

Initial

MUTI WING/ELEMENT SYSTEM DESIGNING
MODE= 1 HWING-1D= 1
MRCH= 0.7300
Y =

. 0
Y = 0.000 CL=-0.0228 CO= 0.0104 0.000 CL= ©0.2290 CD= 0.0107

MULT{ WING/ELEMENT SYSTEM DESIGNING
MODE= 0 HING-1D= 2

MACH= 0.7300
Y = 0.000

MUTI WING/ELEMENT SYSTEM DESIGNING
MODE= 1 HING-10= 2
MACH= 0.7300

CL=-0.0286 CD= 0.0142 Y = 0.000 €L =-0.0060 CO= 0.0136

Fig. 7 Design process history on Example 1 (M.. = 0.73, Re = 1 X 10°. Target Cp, ——;
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tion is essentially in the first order. This is one examination to
assure the robustness of the inverse problem solver, whereas
the pressure distribution is not very desirable for a realistic
design target. In fact, a pressure distribution with strong shock
waves should not be specified as a target pressure distribution,
because strong shock waves cause large drag force. Fortu-
nately, the flow is not largely separated.

In Fig. 7, the leftmost plot shows the initial pressure distri-
bution and geometry contour of each airfoil. From left to right
are presented pressure distributions and corresponding geom-
etry contours after one, three, and five iteration(s) of the design
loop. The current pressure distribution is plotted with symbols.
The symbol + indicates the upper surface pressure and X
designates the lower surface pressure. At the initial stage, both
airfoils have negative lift in spite of their symmetrical shapes
with 0-deg angle of attack. This implies the slight interaction
between two airfoils. We obtain the wing geometry that almost
realizes the target pressure distribution after five iterations of
the design loop. In the vicinity of the shock wave, the complete
agreement with the target pressure is not always attainable. The
further iteration of the loop or the finer panel discretization
does not improve the designed result in the vicinity of the
shock wave. Sophisticated strategy should be taken for the
improvement. Reference 10 mentioned some of the strategy
such as modification of the equation and smoothing of the
wing surfaces.

Figure 8 presents the convergence history of Example 2 (see
Fig. 4). M.. is 0.60 and the Reynolds number is 1 X 10° The
specified target pressures drawn with solid lines are those used
for redesigning a known shape. In Fig. 8, the leftmost plot
shows the initial pressure distribution and geometry contour of
each airfoil. From left to right are presented pressure distri-
butions and corresponding geometry contours after one, five,

Cr After Ce q After
ol 3rd iteration  _ ] Sth iteration
4

1.2

MUTI WING/ELEMENT SYSTEM DESIGNING MUTI WING/ELEMENT SYSTEM DESIGNING
MODE= 3 HING-ID= 1 MBDE= S HING-1D= 1
MACH= 0.7300

MACH= 0.7300
0.000 0.00

0.2762 €D= 0.0084 Y = CL= 0.3202 CO= 0.0118

Y = CL=

0.8

2
MUTI WING/ELEMENT SYSTEM DESIGNING
MODE= S WING-ID= 2

MACH= 0.7
CL= 0.0742 CD= 0.0125 Y = n.uogou

1.2
MUTI WING/ELEMENT SYSTEM DESIGNING
MODE= 3 WING-ID= 2

MACH= D0.7300

Y = 0.000 CL= 0.0755 CD= 0.0128

current Cp, + and X.
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MULTI WING/ELEMENT SYSTEM DESIGNING
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Y = 0.000 CL= 0.0758 CO= 0.0059 1=

MULTI WING/ELEMENT SYSTEM DESIGNING
MODE= 1 WING-1D= 1
MACH= 0.6000

0.000

MULTI WING/ELEMENT SYSTEM DESIGNING
MODE= O  WING-ID= 2

MACH= 0,6000
Y = 0.000

MULTI WING/ELEMENT SYSTEM DESIGNING
MODE= 1 WING-1D= 2
MACH= 0.6000
Y= 0.000

CL=-0.0361 CD0= 0.0071 €lL= 0.0957 CO= 0.0124

CL= 0.4450 CD= 0.00S54
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Ce After Cr -
el . Sth iteration

After
9th iteration

1.2 1.2
MULTI WING/ELEMENT SYSTEM DBESIGNING
MODE= S5  HING-ID= 1

MACH= 0.6000
Y = 0.000

MULTI WING/ELEMENT SYSTEM DESIGNING
MBOE= 9@  WING-ID= 1

O0E=
MACH= 0.6000

CL= 0.5774 CD= 0.0029 Y = 0.000 CL= 0.6048 CD= 0.0023

MULTI WING/ELEMENT SYSTEM DESIGNING MULTE WING/ELEMENT SYSTEM DESIGNING
MODE= 5  WING-ID= 2 MODE= 9 ING-10= 2
MACH= 0.6000
Y = 0.000

0
Y = 0.000 ClL= 0,1227 CD= 0.0171 CL= 0.1251 CD= 0.0180

Fig. 8 Design process history on Example 2 (M.. = 0.60, Re = 1 X 10°. Target Cp, ——; current Cp, + and X.

and nine iteration(s) of the design loop. At initial stage, the
lift of the main part is slightly positive, and that of the flap is
definitely negative. This fact suggests that there is strong aero-
dynamic interaction between two airfoils. We obtain the de-
signed geometry after nine iterations. As stated before, the
doubled fine panel discretization improves the agreement be-
tween the target and the calculated pressures of the conver-
gence state as well as reduces the number of iterations required
for convergence by 20%.

The comparison is made in Fig. 4 between the initial and
designed geometry of Example 1 and Example 2. Figure 4
shows the airfoil contours in the real scale and in the magnified
scale in the z direction. Both airfoils of Example 1 have as-
sumed the same angle of attack, as expected. On the other
hand, both airfoils of Example 2 have changed greatly their
shapes and angles of attack. The flap-like airfoil has definitely
thickened and inclined. It is interesting to compare the de-
signed shape of Example 2 with that of the redesigning prob-
lem, both of which we specify the same target pressure distri-
bution. It can be seen that difference in the interaction between
airfoils precisely affects designed shapes. Designed shapes of
both problems differ greatly in three points: 1) the shape of
the trailing edge of a front airfoil, 2) the angle of attack of a
rear airfoil, and 3) the thickness of a rear airfoil.

VI. Concluding Remarks

An inverse design method for multiple wing systems has
been devised on the basis of Takanashi’s method. The new
method determines wing section geometry that realizes the
specified target pressure distribution over wings. It designs
multiple wings in a transonic/high-subsonic flowfield simul-
taneously. The inverse problem is formulated to be integral
equations that relates geometrical correction to pressure dif-

ference. The formulation starts from the transonic small dis-
turbance equation and considers interacting effects among
wings. The inverse problem is solved numerically with discre-
tizing wings’ surface into small panels. An iterative design
procedure is constructed coupling the new inverse problem
solver and a Navier- Stokes flow analysis code. The procedure
has been applied to preliminary design problems to show the
feasibility of the new inverse design method. The authors con-
firm that the method works well for the design of airfoil shapes
of multiple airfoil systems.

Through the research we have also found the following
facts:

1) The inverse problem can be formulated analytically for a
flowfield of multiple wings interacting with each other.

2) The inverse design method is able to evaluate interacting
effect among wings accurately and provide design results rel-
evant to the effect.

3) The method is so efficient in computational time and
memory that it is a promising concept for more complicated
design problems.
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